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The non-linear dynamic behaviour of in"nitely long circular cylindrical shells in the case
of plane strains is examined and results are compared with previous studies. A theoretical
model based on Hamilton's principle and spectral analysis previously developed for
non-linear vibration of thin straight structures (beams and plates) is extended here to
shell-type structures, reducing the large-amplitude free vibration problem to the solution of
a set of non-linear algebraic equations. In the present work, the transverse displacement is
assumed to be harmonic and is expanded in the form of a "nite series of functions
corresponding to the constrained vibrations, which exclude the axisymmetric displacements.
The non-linear strain energy is expressed by taking into account the non-linear terms due to
the considerable stretching of the shell middle surface induced by large de#ections. It has
been shown that the model presented here gives new results for in"nitely long circular
cylindrical shells and can lead to a good approximation for determining the fundamental
longitudinal mode shape and the associated higher circumferencial mode shapes (n'3) of
simply supported circular cylindrical shells of "nite length. The non-linear results at small
vibration amplitudes are compared with linear experimental and theoretical results obtained
by several authors for simply supported shells. Numerical results (non-linear frequencies,
vibration amplitudes and basic function contributions) of in"nite shells associated to the
"rst four mode shapes of free vibrations, are obtained, using a multi-mode approach and are
summarized in tables. Good agreement is found with results from previous studies for both
small and large amplitudes of vibration. The non-linear mode shapes are plotted and
discussed for di!erent thickness to radius ratios. The distributions of the bending stresses
associated with the mode shapes are given and compared with those obtained via the linear
theory.
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1. INTRODUCTION

The subject of large vibration amplitudes of shell-type structures is a problem of great
technical interest because it is encountered in many engineering applications, especially, in
the aerospace industry and naval architecture. Geometrical non-linearity occurs very often
in many applications of panels, particularly in aircraft. Aircraft skin-panels, especially those
near the exhausts of jet engines, are often subject to high levels of acoustic pressure. This
may result in large-amplitude, non-linear vibration of the panels [1}3]. It is known that
when a shell is de#ected more than approximately one-half of its thickness, signi"cant
geometrical non-linearity is induced [4]. Therefore, it is important to study such shells in
order to determine their dynamic behaviour. At the beginning of this introduction, it may be
interesting to note that shell vibration problems involve, even in the linear case, many
speci"c di$culties. As outlined in reference [5], shell problems have the added complexity
of curvature, compared with plates, which induces an eighth order system of governing
partial di!erential equations of motion instead of the fourth order system obtained in the
plate case and also the necessity of using a greater number of boundary conditions. On the
other hand, shells are much more complicated than plates because all theoreticians agree on
the form of the classical, fourth-order equations of motion for a plate, but such agreement
does not exist in shell theory [5]. Numerous di!erent shell theories have been derived and
used in the literature [6}18].

The disagreements between these theories are due to the various assumptions made
about the form of small terms and the order of terms which are retained in the analysis. In
addition, some of the di$culties encountered are associated with the non-linear dynamic
behaviour, such as those mentioned in reference [19], and with the numerical modelling of
the geometrically non-linear vibration, which is not easy to take into account even in the
case of simpler continuous systems, such as beams and plates [20}23].This is due, among
many reasons, to the fact that the concept of normal modes becomes obscure in the
non-linear case, since the assumptions of the time and space variable separation and that
the motion is harmonic cannot be rigorously satis"ed [21, 24]. For all of the above reasons,
it clearly appears that studying the non-linear dynamic behaviour of shells may be a very
di$cult task which should be dealt with carefully and by means of successive approximations,
each approximation having its corresponding domain of validity and being justi"ed by the
simplicity it introduces in the analysis and the ease with which it allows quantitative
understanding of the shell dynamic behaviour and results to be obtained.

A variety of computational methods have been proposed and adopted by many
researchers in the "eld of shell vibration modelling and analysis. The study of the dynamic
behaviour of isotropic and orthotropic thin shells within the scope of linear models has been
the subject of numerous works [25}33]. The free vibration of solid cylinders of di!erent end
supports [34] and of stress-free hollow cylinders of arbitrary cross-section [35] has been
investigated by Liew et al. using a three-dimensional elasticity solution. The solution
technique adopted in references [34, 35] has been extended by Hung et al. [36] to free
vibration of cantilevered cylinders for di!erent cross-sections and cavities. More recently,
theoretical and numerical analyses of free vibration of solid cylinders having square and
hexagonal cross-sections with combinations of "xed and free ends has been reported by
Liew et al. [37]. A general review of the dynamic characteristics of shells has been given by
Leissa in his monograph [5], and in a conference paper [19]. Recently, an excellent survey
on vibration of shallow shells has been reported by Liew et al. reference [38] which
summarizes papers published prior to 1996. This review paper documents recent
developments in the free vibration analysis of thin, moderately thick, and thick shallow
shells.
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The "rst signi"cant step towards the understanding and solution of non-linear vibration
problems of shells has emanated from the work of Reissner in 1955 [39]. Speci"cally, for
predominantly radial motion of shallow shells, Reissner showed that the mid-surface inertia
terms can be neglected with a small resulting error. In this work, the authors are not
concerned in giving a review on non-linear vibrations of shells. However, interested readers
can turn to the recent survey of Amabili et al. [40] on non-linear vibration of closed
cylindrical shells. Neglecting the tangential inertia terms and using Galerkin's procedure,
Evensen showed that in the case of plane strains for an in"nitely long circular cylindrical
shell, the equations of motion reduce to the form of a Du$ng equation [41, 42]. Radial
displacements were assumed to be proportional to the fundamental mode and the
contributions of the other modes were neglected but will be taken into account in this study
(multi-mode approach).

Generally, dynamic analysis techniques applied to non-linear vibration problems can be
more accurate if non-linear analytical methods are available. Considerable research has
taken place on the non-linear dynamic behaviour of shells with large vibration amplitudes,
based on di!erent approximate methods. The most commonly used methods are the
harmonic balance, the so-called method of averaging [24, 43, 44], Galerkin's method
[39}41, 45}48], the perturbation method [45}47, 49], and the "nite element method
[4, 49, 50]. However, the majority of these works has been made based upon the
single-mode approach and the contributions of other modes have been ignored.

Also, only a few papers are available which are concerned with the non-linear free
vibration of shells of in"nite length. Most of them are based on the single-mode approach
[41, 42] and do not give any information concerning the form of the non-linear modes and
their associated bending stress distributions. As accurate stress prediction is very important
in engineering applications, it is necessary to investigate the non-linear behaviour of in"nite
shells in order to improve, qualitatively and quantitatively, the results obtained previously.

It appears from the brief review given above that in spite of considerable research, no
general exact solution and systematic approach to the complicated problem of non-linear
vibrations of shells is known which allows all or at least most of the known non-linear
e!ects to be described in a uni"ed manner. Furthermore, reliable, accurate results are
generally lacking. Indeed, considerable disagreement among existing published results is
found. The resulting knowledge in many cases is therefore, at best, only qualitative [19].
A theoretical model based on Hamilton's principle and spectral analysis has been proposed
by Benamar et al. [20, 51] in order to adapt the Rayleigh}Ritz linear eigenvalue problem to
non-linear problems of vibration of thin straight structures. This model was applied to
simply supported, clamped beams, and to rectangular isotropic and laminated plates
[21, 51}53]. This model was then extended in order to determine the "rst transverse
non-linear mode shape of in"nite cylindrical shells [54] and recently, has been applied,
using a single-mode approach, to transverse non-linear vibration for "nite circular
cylindrical shells [55]. More recently, in Part I of this series of papers, the model was
developed and applied to an in"nite circular cylindrical shell taking into account the
coupling between the circumferential and transverse mode shapes [56]. In a letter to the
Editor [57], a criticism has been made by Amabili et al. concerning the form of the series
used by Moussaoui et al. [56] to expand the transverse displacement function. In their reply
[58], the authors have extensively discussed the purpose of the work presented in Part I
[56], and the domain of application and validity of the assumptions made. In particular, it
was speci"ed that the work was concerned with: (1) free vibration, which justi"ed the
absence of the companionmode in the displacement function series used to express the shell
response; (2) constrained vibration, which explains the absence of the axisymmetric
functions in the series, and results in a considerable stretching of the shell mid-plane,
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inducing the deformation of the shell mode shapes. More details concerning this discussion
may be found in reference [58]. One purpose of the present paper (Part II) is to develop the
work presented in references [41, 42, 54] in order to obtain reliable understanding of the
non-linear dynamic behaviour, using a multi-mode approach (i.e., taking into account the
contributions of the higher modes), of an in"nite circular cylindrical shell when only the
transverse displacement is considered. It is also intended to show that this special case of
in"nite shells can be useful to obtain, with a good approximation, the natural frequency of
the lowest longitudinal mode, i.e.,m"1, and its associated higher circumferential modes for
circular cylindrical shells of "nite length. This approach simpli"es strongly the formulation
and the numerical e!ort for this shell category, compared with some previous approaches.
For example, in references [27}29] the authors have used a laboriousmathematical analysis
in order to "nd the same results for the fundamental longitudinal mode (m"1), which are
obtained easily by the model presented here, as shown in section 3.8.

The simple mathematical model of shells based on the plane strain assumption used in
references [41, 42, 54, 56] is adopted. This assumption changes the character of the shell
motion from two-dimensional to one-dimensional and thus the analysis is considerably
simpli"ed. Assuming harmonic motion and expanding the transverse displacement in the
form of a series of functions, the discretized expression for the non-linear strain energy at
large vibration amplitudes is obtained. In this expression, in addition to the classical mass
and rigidity tensors, a fourth order tensor appears due to the non-linearity. The technique
adopted was to "rst assume a given value for one-mode contribution, and then apply
Hamilton's principle in order to determine the other mode contributions. Minimization of
the energy functional with respect to the unknown contribution coe$cients leads to a set of
non-linear algebraic equations which has been solved numerically in each case, to obtain
a set of non-linear mode shapes (the study is extended here to the fourth circumferential
mode), each mode being given as a function of the amplitude of vibration and the
corresponding frequency. The numerical results obtained here are compared with those
from previous studies and good agreement is found. The forms of the "rst four non-linear
mode shapes and their corresponding bending stress distributions are represented and
discussed for shells with various geometrical characteristics. This paper is organized as
follows: in section 2 the analytical model and the formulation are stated. Then,
detailed results concerning shells of in"nite length are illustrated and discussed in
section 3. A comparison of the results obtained here with both theoretical and experimental
results given by several authors, for "nite circular cylindrical shells, is presented in
section 3.8.

2. MATHEMATICAL MODEL

2.1. BASIC ASSUMPTIONS

Consider the transverse vibration of the shell shown in Figure 1, having the following
characteristics: E, Young's modulus, � the mass density, � the Poisson ratio, h thickness,
R the radius of shell median surface and =(y, t ) the transverse displacement in the
z direction. The basic assumptions considered in this work are as follows

(1) There is no motion in the direction of the length of the shell (plane strain assumption).
(2) As concern is only for free vibrational behaviour, the companion mode should be

ignored.
(3) The case of constrained vibrations explains the absence of the axisymmetric terms in

the expression of transverse displacement.
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Figure 1. Schematic diagram of a circular cylindrical shell of in"nite length.
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(4) The transverse displacement= (y, t ) can be expressed in the form of a "nite series in
which the time and space variables are assumed to be separable as

= (y, t)"c
�
w
�
(y) cos�t, (1)

where c
�
are the contribution coe$cients of the basic functions w

�
chosen in the

present work as the shell linear mode shapes, with i varying from 1 to n, n being the
number of functions.

(5) The cylindrical shell is very long (in"nite length) and is vibrating in a mode so that the
half-wavelength in the x direction is ¸. This may represent a "nite shell of length
¸ having a particular set of end conditions [41, 42]. This assumption implies that the
displacement in the x-direction, u, equals 0 and terms involving derivatives with
respect to x vanish. So, the strain tensor reduces to �

�
only, which is given by [56]

�
�
"�</�y#=/R#�

�
(�=/�y)�#z (��=/�y�) . (2)

As the purpose of the present paper was to develop a simpli"ed theory, facilitating easy
derivation of many results previously given in the literature, based on the single-mode
approach, via a laborious formulation and to obtain new more accurate results, based on
a multi-mode approach, a simpli"cation has been adopted in the above expression. This is
based on the fact established in previous linear works [59, 60] according to which the nth
transverse mode =

�
and its associated circumferential mode <

�
may be expressed by

=
�
"c

�
cos (ny/R), <

�
"b

�
sin (ny/R) (3a, b)

in which c
�
and b

�
are approximately related, as explained in Appendix A, by

c
�
+!nb

�
. (4)

Substituting the=
�
and <

�
expressions given above in the "rst two terms of �

�
and taking

into account the last relationship, a cancellation e!ect occurs, similar to that mentioned for
plates by Han and Petyt [2], according to which

�</�y#=/R"0. (5)
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Substituting equation (5) into equation (2) leads to the expression of �
�
as

�
�
"�

�
(�=/�y)�#z (��w/�y�) . (6)

By using this simpli"cation, and substituting in the total strain energy expression [38] of
a shell having a unit length,

<"

E

2(1!�� ) �
���

����
�

���

�

(��y ) dzdy (7)

leads to the strain energy as expressed in equation (8).
It should be noted that in Part I of this series of papers, a multi-mode approach has been

adopted for both = and < and it was shown from the numerical solution of the set of
non-linear algebraic equations that relationship (4) remains satis"ed between the
contributions c

�
and b

�
of the predominant function contributions at large vibration

amplitudes. This justi"es the adoption of assumption (5), based on equation (4), in the
non-linear case.

On the other hand, in addition to the justi"cation of expression (8) based on the nature of
the in"nite shell, the validity of the above approximate expression is discussed later in the
light of the numerical results obtained (see section 3.3). It will be seen that the numerical
results based on this expression obtained from the non-linear model developed here
coincide exactly with the classical ones obtained by Evensen [41] and reported by Leissa
[42] when only one mode is considered in the present model.

2.2. THE BENDING STRAIN, AXIAL STRAIN AND KINETIC ENERGIES OF A SHELL OF INFINITE

LENGTH

Substituting expression (6) in Equation (7) and rearranging, the total strain can be written
as the sum of two terms, the membrane strain energy <

�
and the bending strain energy

<
�
as

<"<
�
#<

�
"

3D

2h��
���

�
�
�=
�y �

�
dy#

D

2 �
���

�
�
��=

�y� �
�
dy. (8)

where D is the bending sti!ness given by D"Eh�/12(1!�� ). The membrane strain energy,
<

�
, induced by the considerable stretching of the shell middle surface is a fourth-order

functional of= "rst derivative.
The kinetic energy of the shell is given by

¹"

�h
2 �

���

�
�
�=
�t �

�
dy, (9)

in which the longitudinal and tangential inertia terms are neglected, and � is the mass per
unit volume.

2.3. DISCRETIZATION OF THE TOTAL STRAIN AND KINETIC ENERGY EXPRESSIONS

The discretization of total strain energy expression is made by substituting expression (1)
into equation (8) and rearranging, leading to

<"�
�
c
�
c
�
k
��
cos��t#c

�
c
�
c
	
c


b
��	


cos��t . (10)
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Substituting equation (1) into Equation (9), the discretized expression of the kinetic energy is

¹"�
�
��c

�
c
�
m

��
sin��t (11)

Non-dimensional formulation of the non-linear vibration problem can be made as. by
putting

w
�
(y)"hw*

�
(y/R)"hw*

�
(y*), �"h/R (12)

where y* is a non-dimensional co-ordinate; y*"y/R.
One obtains

k
��

k*
��

"

Eh�

(1!��)R
,

b
��	


b*
��	


"

Eh�

(1!��� )R
,

m
��

m*
��

"�Rh�, (13)

where k*
��
is the non-dimensional general term of the classical rigidity tensor [K], given by

k*
��
"

��

12�
��

�

��w*
�

�y*�
��w*

�
�y*�

dy* . (14)

b*
��	


is the non-dimensional general term of the fourth-order non-linear tensor [B], given by

b*
��	


"

��

4 �
��

�

�w*
�

�y*
�w*

�
�y*

�w*
	

�y*
�w*



�y*

dy* (15)

and m*
��
is the non-dimensional general term of the mass tensor [M], given by

m*
��
"�

��

�

w*
�
w*

�
dy* . (16)

2.4. FORMULATION OF ENERGY FUNCTIONAL AND GOVERNING EQUATIONS

The dynamic behaviour of the structure is governed by Hamilton's principle, which is
symbolically written as

� �
����

�

[< (t)!¹ (t)] dt"0. (17)

Introducing assumed series (1) into energy condition (17) via equations (10) and (11) reduces
the problem to that of "nding the minimum of the function � given by

�"�
����

�
�

Eh�

2(1!�� )R
c
�
c
�
k*
��

cos��t#
Eh�

2(1!�� )
c
�
c
�
c
	
c


b*
��	


/cos��t

!�
�
�Rh��� c

�
c
�
m*

��
sin� �t� dt (18)

with respect to the undetermined constant c
�
. Integrating the trigonometric functions

cos��t, cos� �t and sin��t over the range [0, 2�/�] leads to the expression

�"(�/2�) �
Eh�

(1!��)R
c
�
c
�
k*
��
#

3

4

Eh�

(1!��)R
c
�
c
�
c
	
c


b*
��	


!�Rh���c
�
c
�
m*

��� . (19)
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In this expression, � appears as a function of only the undetermined constants, c
�
,

i"1,2 ,n. Equation (17) reduces to

��/�c
�
"0, r"1,2,n. (20)

Generally, the tensors k*
��
and m*

��
are symmetric, and the tensor b*

��	

is such that

b*
��	


"b*
	
��

, b*
��	


"b*
��	


. (21)

With these symmetry properties taken into account, it can be shown that equations (20) are
equivalent to the following set of non-linear algebraic equations written in non-dimensional
form as

c
�
k*
��
#�

�
c
�
c
�
c
	
b*
��	�

! �*�c
�
m*

��
"0, r"1,2,n. (22)

�*� is de"ned by equations (25) and (27). It can be seen that when the non-linear term is
neglected, equation (22) reduces to the classical eigenvalue problem

[K]�C�"�� [M]�C� , (23)

which is the well-known Rayleigh}Ritz formulation of the linear vibration problem. In
equation (23), �C�"[c

�
c
�
,2,c

�
]� is the column matrix of coe$cients.

2.5. METHOD OF SOLUTION

Equations (22) are a set of non-linear equations relating the n coe$cients c
�
and the

frequency �. So one has (n#1) unknowns and n equations. In order to complete the
formulation, a further equation has to be added to equation (22). As no dissipation is
considered here, such an equation can be obtained by the principle of conservation of
energy, which can be written as [51]

<
��

"¹
��

, (24)

where<
��

is the maximum value of the strain energy obtained from equation (10) for t"0,
which leads to cos� �t"1, cos� �t"1; and ¹

��
is the maximum value of the kinetic

energy obtained from equation (11) for t"2�/�, i.e., sin��t"1. Equation (24) leads to the
expression for �*�.

�*�"(c
�
c
�
k*
��
#c

�
c
�
c
	
c


b*
��	


)/c
�
c
�
m*

��
. (25)

The technique adopted in the present work was to apply condition (24) assuming a given
value of the contribution c

��
of the function =

��
, and to determine the contribution of

coe$cients c
�
(iOr

�
) of the functions w

�
(iOr

�
). According to this, the r

�
th non-linear

transverse mode shape of the structure, corresponding to a given amplitude coe$cient c
��
,

is obtained by solving the set of (n!1) non-linear algebraic equations obtained by
substituting expression (25) for �*� in equation (22), which leads to

c
�
k*
��
#�

�
c
�
c
�
c
	
b*
��	�

!

c
�
c
�
k*
��
#c

�
c
�
c
	
c


b*
��	


c
�
c
�
m*

��

c
�
m*

��
"0, (26)

for rOr , and i, j, k and l varying from 1 to n.

�
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The values of c
�
, for iOr

�
, obtained by solving equations (26) can be substituted into

equation (25) to obtain the value of �*� corresponding to the chosen amplitude parameter
c
��
. �*� is the non-dimensional non-linear natural frequency parameter related to the

frequency parameter �� by

��"(12D/�R�h�) �*�"(E/� (1!�� )R�)�*� . (27)

This set of equations is identical to equation (17) established in references [21, 51, 52] for
non-linear free vibration of fully clamped beams and rectangular plates. It has to be solved
for each value of the shell thickness to radius ratio �"h/R and assigned predominant
function contribution, to obtain the amplitude-dependent non-linear shell mode shape.

As the shell considered is assumed to have an in"nite length (see section 2.1), the basic
functions used in the numerical model were independent of the length co-ordinate x*. Thus,
the transverse displacement functions are assumed to be

w*
�
(y*)"cos (iy*) and u*

�
"0, v*

�
"0. (28)

2.6. BENDING STRESS EXPRESSIONS

To obtain the stress distribution along the shell circumferential co-ordinate, one
considers the maximum bending strain 	

��
obtained for z"h/2 as

	
��

"(h/2) (��=/�y�). (29)

Using the classical thin shell assumption of plane strains and Hooke's law, the stresses can
be written as



�

"

�hE
2(1!��)

��=

�y�
, 


��
"

hE

2(1!��)
��=

�y�
. (30, 31)

In terms of the non-dimensional parameters de"ned in these equations, non-dimensional
stresses 
*

�
and 
*

��
can be de"ned by


*
�

"� (��=*/�y*� ) , 
*
��

"(��=*/�y*�) . (32, 33)

The relationships between the dimensional and non-dimensional stresses are


"(E��/2(1!v�)) 
* . (34)

3. NUMERICAL RESULTS AND DISCUSSION

3.1. NUMERICAL DETAILS AND ITERATIVE PROCEDURE

To obtain the natural frequencies and the non-linear mode shapes of the shell described
in section 2.1, 24 basic functions (w*

�
, w*

�
,2,w*

��
) associated with transverse displacement

=* were used. As a set of 23 non-linear algebraic equations had to be solved numerically
for various values of the amplitudes of vibration and thickness to radius ratios, it was
necessary to "nd an appropriate routine. The set of non-linear algebraic equations (26) has
been solved numerically using the Harwell library routine NS01A. This routine is based on
a hybrid iteration method combining the step descent and Newton's methods and does not
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require a very good initial estimate of the solution [61]. In addition, a step calculation
procedure, similar to that described in references [20, 21, 51, 52] and recently in references
[54, 56], was adopted in order to facilitate convergence. So, for the rth non-linear mode
shape, the "rst calculation was done in the neighbourhood of the linear solution by
attributing a small numerical value to the coe$cient c

�
of the basic function w*

�
. The

resulting solution was used as an initial estimate for the following step corresponding to
c#�c. Thus, by choosing in each case the convenient value of the step �c, the rth
non-linear mode shape has been calculated at various maximum vibration amplitude to
shell thickness ratios extending up to a given value. This procedure has ensured rapid
convergence when varying the amplitude. So, solutions have been obtained with quite
a small number of iterations (for 12 equations one has an average of 30 for the "rst mode, 60
for the second mode, 67 for the third mode and 58 for the fourth mode).

3.2. CONVERGENCE OF THE SPECTRAL EXPANSION

Typical results referring to 24 basic functions (w*
�
,w*

�
,2,w*

��
), to a shell thickness to

radius ratio equal to 0)05 and to three maximum values of the amplitude to thickness ratio
are given in Table 1(a) for the "rst mode and in Table 1(b) for the second mode as an
example. It can be seen that the only signi"cant contributions are, as may be expected due
to the antisymmetry of the "rst circumferential shell mode shape, those corresponding to
the 12 "rst antisymmetric functions (w*

�
,w*

	
,2,w*

��
) in the y direction. Also, for the second

mode, the only signi"cant contributions are those corresponding to the 12 "rst symmetric
functions (w*

�
,w*



,2,w*

��
) in the y direction. To check that the addition of symmetric shell

functions does not a!ect the results, calculations were made with only 12 antisymmetric
functions. The results show no signi"cant change in both the value of the resonance
frequency and the basic function contributions. It has been concluded that the non-linear
mode shapes can be obtained with enough accuracy using the 12 "rst asymmetric basic
functions, which simplify signi"cantly the computational e!ort, since calculations of the
non-linearity tensors b*

��	

involve 24�"3)31776�10	 terms when using 24 basic functions,

but only 12�"2)0736�10� terms when using 12 basic functions.

3.3. COMPARISON WITH PREVIOUS NON-LINEAR RESULTS

Unfortunately, the only results available in the literature concerning in"nite shell
vibration are based on the single-mode approach. So, although various techniques have
been used, as discussed in the introduction, no results were found for the dependence of
contribution coe$cients on the amplitude of vibration. Therefore, the comparisons
presented here have been restricted to the amplitude dependence of the resonance
frequencies associated with the non-linear modes. The numerical results obtained from
solution of the set of non-linear algebraic equations (26), for the four "rst non-linear mode,
are compared in Table 2 and Figure 2(a, b) with theoretical results from the single-mode
approach obtained by Evensen [41, 42] from application of the elliptic integral method to
the temporal Du$ng's di!erential equation. The plot shows clearly a hardening spring
e!ect and the results are in good agreement with those obtained previously. The small
discrepancy observed is due to the contribution of the higher modes at large vibration
amplitudes (for the "rst mode one has c

�
, c

	
,2,c

��
(see Table 3(a)); for the second mode

c
�
, c



,2, c

��
(see Table 3(b)) neglected in the Evensen theory, but taken into account in the

present work. It may be also noted that this di!erence increases with increasing mode order.



TABLE 1

¹ypical numerical results obtained with 24 basic functions for �"0)05.

(a) First non-linear mode (b) Second non-linear mode

=*
��

0)05000489 1)29313848 2)65601182 0)04999912 1)29313827 2)65598944
�*

��
0)01447428 0)02980875 0)05304729 0)05789714 0)11923500 0)21218956

c
�

0)5000000E!01 0)1250000E#01 0)2500000E#01 0)5000000E!01 0)1250000E#01 0)2500000E#01
c
�

!0)34106394E!06 0)49805060E!09 0)86166030E!11 !0)56805119E!05 !0)99122924E!11 !0)44818521E!14
c
�

0)51746515E!05 0)39544554E!01 0)12821332E#00 !0)33173742E!06 0)98457468E!11 0)51345876E!13
c
�

0)51854558E!07 0)10282707E!09 0)28378750E!11 !0)12780645E!06 0)66541415E!08 0)11178721E!04
c
	

0)35994557E!08 0)32463606E!02 0)21794811E!01 !0)76601710E!08 0)83587146E!11 !0)32288541E!14
c



!0)20093295E!08 0)18450919E!10 0)20353644E!11 0)52719613E!05 0)39544553E!01 0)12820898E#00
c
�

!0)32839247E!09 0)31154854E!03 0)46181939E!02 !0)38646661E!08 !0)67098760E!11 !0)18035535E!13
c
�

!0)37368853E!09 !0)28648901E!11 0)12062785E!11 !0)50097398E!08 0)58396248E!08 0)97525561E!05
c


!0)10716825E!09 0)32111575E!04 0)10538398E!02 !0)22299828E!09 0)47448442E!11 0)13493355E!13
c
��

!0)19517440E!09 0)47374060E!11 !0)42112540E!12 0)97644259E!09 0)32463589E!02 0)21790737E!01
c
��

!0)82962388E!10 0)34660765E!05 0)25016077E!03 0)34124614E!09 !0)10912219E!11 0)10713121E!13
c
��

!0)26333067E!09 !0)29706443E!11 0)38214036E!12 !0)19292243E!08 0)81067301E!08 0)94995427E!05
c
��

0)64109074E!09 0)38636377E!06 0)61052232E!04 !0)17775408E!08 0)10689132E!11 0)17329868E!14
c
��

!0)71161678E!09 !0)95006180E!12 0)10675514E!12 !0)11285825E!09 0)31154585E!03 0)46141755E!02
c
�	

0)46352492E!09 0)44088210E!07 0)15220703E!04 0)13827008E!08 !0)37608352E!12 0)33386785E!14
c
�


0)34424202E!09 !0)20441423E!11 0)28138018E!12 0)17473280E!08 0)17200508E!07 0)11026143E!04
c
��

0)25149266E!09 0)51197250E!08 0)38589934E!05 0)64711228E!09 0)16212013E!11 0)71234741E!14
c
��

0)82539031E!09 !0)80386666E!13 !0)19767430E!12 !0)28916257E!10 0)32106037E!04 0)10493563E!02
c
�

!0)11746653E!08 0)60122584E!09 0)99206000E!06 0)18361815E!08 0)82768236E!12 0)44158086E!14
c
��

0)22374112E!09 0)90376169E!13 !0)55264592E!13 !0)42419465E!09 0)48447886E!07 0)15454427E!04
c
��

0)46482131E!09 0)72586837E!10 0)25884886E!06 !0)98255288E!09 !0)18531141E!11 !0)85881300E!14
c
��

0)14424362E!09 0)95301553E!12 !0)12187053E!12 0)15585320E!08 0)34527498E!05 0)24378983E!03
c
��

!0)29483433E!09 0)94366184E!11 0)70536193E!07 !0)98904878E!09 0)13621540E!12 0)31039621E!14
c
��

0)14159019E!09 0)46859115E!12 !0)28262307E!13 0)26421053E!09 0)16262372E!06 0)25493788E!04
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TABLE 2

Comparison of frequency parameter of the ,rst four mode shapes obtained for large vibration amplitudes, by the multi-mode approach, from the set
of non%linear algebraic equations (26) with those obtained by Evensen using a single-mode approach, from the elliptic integral method. [41, 42]

�"0)01.

First mode Second mode Third mode Fourth mode

C
i

/h (�*
��
)� (�*

��
)� (�*

��
)� (�*

��
)� (�*

��
)� (�*

��
)� (�*

��
)� (�*

��
)�

0)05 0)28949E!02 0)28949E!02 0)11579E!01 0)11579E!01 0)26054E!01 0)26054E!01 0)46318E!01 0)46318E!01
0)25 0)30831E!02 0)30830E!02 0)12332E!01 0)12327E!01 0)27747E!01 0)27737E!01 0)49329E!01 0)49310E!01
0)50 0)36084E!02 0)35944E!02 0)14434E!01 0)14377E!01 0)32476E!01 0)32349E!01 0)57735E!01 0)57510E!01
0)75 0)43451E!02 0)42964E!02 0)17381E!01 0)17186E!01 0)39106E!01 0)38667E!01 0)69522E!01 0)68742E!01
1)00 0)52042E!02 0)51005E!02 0)20817E!01 0)20402E!01 0)46837E!01 0)45905E!01 0)83267E!01 0)81609E!01
1)25 0)61343E!02 0)59618E!02 0)24537E!01 0)23847E!01 0)55209E!01 0)53656E!01 0)98150E!01 0)95392E!01
1)50 0)71078E!02 0)68576E!02 0)28431E!01 0)27430E!01 0)63970E!01 0)61719E!01 0)11372E#00 0)10973E#00
1)75 0)81090E!02 0)77761E!02 0)32436E!01 0)31104E!01 0)72981E!01 0)69986E!01 0)12974E#00 0)12445E#00
2)00 0)91287E!02 0)87102E!02 0)36515E!01 0)34841E!01 0)82158E!01 0)78395E!01 0)14606E#00 0)13942E#00
2)25 0)10161E!01 0)96556E!02 0)40646E!01 0)38622E!01 0)91453E!01 0)86906E!01 0)16258E#00 0)15458E#00
2)50 0)11204E!01 0)10609E!01 0)44814E!01 0)42438E!01 0)10083E#00 0)95496E!01 0)17926E#00 0)16990E#00
2)75 0)12253E!01 0)11570E!01 0)49011E!01 0)46280E!01 0)11027E#00 0)10415E#00 0)19604E#00 0)18533E#00
3)00 0)13307E!01 0)12535E!01 0)53229E!01 0)50142E!01 0)11977E#00 0)11285E#00 0)21292E#00 0)20085E#00
3)25 0)14366E!01 0)13505E!01 0)57464E!01 0)54021E!01 0)12929E#00 0)12159E#00 0)22986E#00 0)21645E#00
3)50 0)15428E!01 0)14478E!01 0)61712E!01 0)57913E!01 0)13885E#00 0)13036E#00 0)24685E#00 0)23211E#00
3)75 0)16493E!01 0)15454E!01 0)65970E!01 0)61817E!01 0)14843E#00 0)13916E#00 0)26388E#00 0)24782E#00
4)00 0)17559E!01 0)16432E!01 0)70238E!01 0)65730E!01 0)15803E#00 0)14798E#00 0)28095E#00 0)26358E#00
4)25 0)18628E!01 0)17412E!01 0)74512E!01 0)69651E!01 0)16765E#00 0)15682E#00 0)29805E#00 0)27937E#00
4)50 0)19698E!01 0)18394E!01 0)78793E!01 0)73579E!01 0)17728E#00 0)16568E#00 0)31517E#00 0)29520E#00
4)75 0)20770E!01 0)10377E!01 0)33079E!01 0)77514E!01 0)18693E#00 0)17455E#00 0)33232E#00 0)31105E#00
5)00 0)21842E!01 0)20361E!01 0)87369E!01 0)81454E!01 0)19658E#00 0)18344E#00 0)34948E#00 0)32692E#00
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Figure 2. Comparison with previous (a) non-linear theoretical results and (b) previous theoretical results for the
"rst mode 0 for �"0)05. Key for (a): **, present work; - -#- -, Evensen single-mode approach: for (b) **,
Evensen single-mode approach; - -#- -, present work with three-function multi-mode approach; - -#- -, present
work with 12-function multi-mode approach.

NON-LINEAR SHELL VIBRATION 943
It is worth noticing that the solution obtained by Evensen and that obtained here for the
3-D case are very close and coincide exactly, as can be seen in Figure 2(b), when only one
mode is considered in the present model.

3.4. GENERAL PRESENTATION OF THE NUMERICAL RESULTS

Numerical results for a circular cylindrical shell of in"nite length having a thickness to
radius ratio � equal to 0)05 are summarized in Table 3(a}d) for the "rst four mode shapes. In
this table, c

�
represents the contribution of the transverse basic functions and (�*

�

/�*



)
�

represents the associated non-linear frequency ratios (where �*


is the corresponding linear

frequency parameter given in references [41, 42]). In Table 3(a), computed values of
c
�
, c

	
,2,c

��
corresponding to c

�
varying from 0)05 to 5 for the "rst mode are given with

their associated non-linear frequency ratios (�*
�

/�*



)
�
. In Table 3(b), values of c

�
, c



,2,c

��
,

corresponding to c
�
varying from 0)05 to 5 for the second mode, are presented with their

associated non-linear frequency ratios (�*
�

/�*



)
�
. Table 3(c) contains the values of

c
�
, c

	
, c

�
,2,c

��
corresponding to c

�
varying from 0)05 to 5 for the third mode and

their associated non-linear frequency ratios (�*
�

/�*



)
�
. The values of c

�
, c



, c

�
,2,c

��



TABLE 3

Contribution coe.cients of transverse basic functions corresponding to the ,rst four non-linear mode shapes of an in,nite shell having a thickness
to radius ratio �"0)05

(a) First mode

�*
��
/�*

�
C

�
C

�
C

	
C

�
C


C

��
C

��
C

�	
C

��
C

�
C

��
C

��

1)0028 0)05 0)52638E!05 0)10761E!08 0)38995E!12 0)55429E!13 0)48588E!13 !0)1222E!13 0)29560E!13 0)24242E!14 0)13265E!13 0)10482E!13 0)38787E!14

1)0676 0)25 0)63048E!03 0)31209E!05 0)18105E!07 0)11402E!09 0)75626E!12 0)49206E!14 0)58202E!16 0)46557E!16 0)79744E!16 !0)3046E!16 0)18095E!16

1)2451 0)50 0)44680E!02 0)82748E!04 0)17876E!05 0)41851E!07 0)10296E!08 0)26187E!10 0)68215E!12 0)18067E!13 0)46777E!15 0)19652E!16 0)44013E!18

1)4883 0)75 0)12710E!01 0)48024E!03 0)21091E!04 0)10012E!05 0)49899E!07 0)25707E!08 0)13562E!09 0)72833E!11 0)39663E!12 0)21841E!13 0)12152E!14

1)7669 1)00 0)24782E!01 0)14804E!02 0)10283E!03 0)76947E!05 0)60389E!06 0)48971E!07 0)40660E!08 0)34367E!09 0)29453E!10 0)25530E!11 0)22432E!12

2)0652 1)25 0)39545E!01 0)32464E!02 0)31155E!03 0)32112E!04 0)34661E!05 0)38636E!06 0)44089E!07 0)51211E!08 0)60313E!09 0)71841E!10 0)87110E!11

2)3755 1)50 0)55995E!01 0)57925E!02 0)70717E!03 0)92525E!04 0)12656E!04 0)17864E!05 0)25808E!06 0)37947E!07 0)56571E!08 0)85322E!09 0)13163E!09

2)6937 1)75 0)73442E!01 0)90382E!02 0)13289E!02 0)20925E!03 0)34385E!04 0)58260E!05 0)10099E!05 0)17816E!06 0)31864E!07 0)57685E!08 0)10739E!08

3)0173 2)00 0)91451E!01 0)12865E!01 0)21924E!02 0)40038E!03 0)76190E!04 0)14935E!04 0)29940E!05 0)61066E!06 0)12628E!06 0)26452E!07 0)57288E!08

3)3448 2)25 0)10976E#00 0)17152E!01 0)32942E!02 0)67927E!03 0)14580E!03 0)32203E!04 0)72703E!05 0)16696E!05 0)38877E!06 0)91777E!07 0)22518E!07

3)6752 2)50 0)12821E#00 0)21795E!01 0)46182E!02 0)10538E!02 0)25016E!03 0)61052E!04 0)15221E!04 0)38590E!05 0)99206E!06 0)25885E!06 0)70536E!07

4)0079 2)75 0)14672E#00 0)26706E!01 0)61419E!02 0)15270E!02 0)39488E!03 0)10490E!03 0)28451E!04 0)78450E!05 0)21936E!05 0)62326E!06 0)18576E!06

4)3424 3)00 0)16523E#00 0)31816E!01 0)78403E!02 0)20976E!02 0)58396E!03 0)16690E!03 0)48672E!04 0)14426E!04 0)43365E!05 0)13262E!05 0)42712E!06

4)6783 3)25 0)18371E#00 0)37075E!01 0)96886E!02 0)27616E!02 0)81981E!03 0)24974E!03 0)77583E!04 0)24489E!04 0)78410E!05 0)25575E!05 0)88134E!06

5)0153 3)50 0)20215E#00 0)42441E!01 0)11664E!01 0)35131E!02 0)11034E!02 0)35555E!03 0)11678E!03 0)38964E!04 0)13189E!04 0)45536E!05 0)16657E!05

5)3533 3)75 0)22053E#00 0)47884E!01 0)13746E!01 0)43452E!02 0)14345E!02 0)48590E!03 0)16770E!03 0)58777E!04 0)20906E!04 0)75928E!05 0)29285E!05

5)6922 4)00 0)23886E#00 0)53382E!01 0)15917E!01 0)52505E!02 0)18120E!02 0)64177E!03 0)23154E!03 0)84818E!04 0)31537E!04 0)11987E!04 0)48474E!05

6)0317 4)25 0)25713E#00 0)58918E!01 0)18161E!01 0)62216E!02 0)22341E!02 0)82365E!03 0)30929E!03 0)11791E!03 0)45634E!04 0)18073E!04 0)76259E!05

6)3718 4)50 0)27534E#00 0)64480E!01 0)20465E!01 0)72513E!02 0)26985E!02 0)10316E!02 0)40168E!03 0)15877E!03 0)63733E!04 0)26203E!04 0)11489E!04

6)7124 4)75 0)29350E#00 0)70056E!01 0)22820E!01 0)83330E!02 0)32025E!02 0)12653E!02 0)50925E!03 0)20806E!03 0)86345E!04 0)36732E!04 0)16675E!04

7)0534 5)00 0)31161E#00 0)75642E!01 0)25215E!01 0)94604E!02 0)37436E!02 0)15243E!02 0)63230E!03 0)26628E!03 0)11394E!03 0)50014E!04 0)23435E!04
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TABLE 3

Continued

(b) Second mode

�*
��
/�*

�
C

�
C

�
C



C

�
C

��
C

��
C

��
C

�

C

��
C

��
C

��
C

��

1)0028 0)05 0)13830E!09 0)52638E!05 0)17321E!11 0)10671E!08 0)28125E!12 0)84018E!13 !0)1960E!13 0)90944E!13 !0)4160E!13 !0)33822E!13 !0)8478E!13

1)0676 0)25 0)32064E!14 0)63048E!03 0)55909E!16 0)31209E!05 0)97624E!17 0)18105E!07 0)33855E!16 0)11403E!09 0)36953E!16 0)75490E!12 0)21843E!14

1)2451 0)50 !0)29989E!13 0)44680E!02 0)12903E!16 0)82748E!04 0)73428E!14 0)17876E!05 0)65023E!13 0)41851E!07 0)77602E!12 0)10294E!08 0)11081E!10

1)4883 0)75 0)20267E!11 0)12710E!01 0)22461E!11 0)48024E!03 0)58564E!11 0)21091E!04 0)25695E!10 0)10011E!05 0)15285E!09 0)49863E!07 0)10860E!08

1)7669 1)00 0)25003E!09 0)24782E!01 0)23557E!09 0)14804E!02 0)41603E!09 0)10283E!03 0)11848E!08 0)76943E!05 0)45289E!08 0)60274E!06 0)20651E!07

2)0652 1)25 0)66493E!08 0)39545E!01 0)58401E!08 0)32464E!02 0)81047E!08 0)31155E!03 0)17202E!07 0)32106E!04 0)48448E!07 0)34528E!05 0)16262E!06

2)3755 1)50 0)70146E!07 0)55995E!01 0)60142E!07 0)57925E!02 0)71893E!07 0)70714E!03 0)12392E!06 0)92483E!04 0)27946E!06 0)12572E!04 0)75055E!06

2)6937 1)75 0)40880E!06 0)73442E!01 0)34909E!06 0)90381E!02 0)38051E!06 0)13288E!02 0)56456E!06 0)20905E!03 0)10769E!05 0)34035E!04 0)24436E!05

3)0173 2)00 0)15942E!05 0)91450E!01 0)13675E!05 0)12864E!01 0)14082E!05 0)21919E!02 0)18739E!05 0)39969E!03 0)31422E!05 0)75082E!04 0)62545E!05

3)3448 2)25 0)46818E!05 0)10976E#00 0)40480E!05 0)17151E!01 0)40261E!05 0)32926E!02 0)49500E!05 0)67737E!03 0)75070E!05 0)14293E!03 0)13466E!04

3)6752 2)50 0)11179E!04 0)12821E#00 0)97526E!05 0)21791E!01 0)94995E!05 0)46142E!02 0)11026E!04 0)10494E!02 0)15454E!04 0)24379E!03 0)25494E!04

4)0079 2)75 0)22853E!04 0)14671E#00 0)20117E!04 0)26697E!01 0)19360E!04 0)61332E!02 0)21550E!04 0)15177E!02 0)28388E!04 0)38230E!03 0)43737E!04

4)3424 3)00 0)41471E!04 0)16521E#00 0)36817E!04 0)31799E!01 0)35204E!04 0)78236E!02 0)38012E!04 0)20803E!02 0)47685E!04 0)56132E!03 0)69460E!04

4)6783 3)25 0)68557E!04 0)18368E#00 0)61345E!04 0)37043E!01 0)58490E!04 0)95594E!02 0)61780E!04 0)27319E!02 0)74569E!04 0)78201E!03 0)10370E!03

5)0154 3)50 0)10524E!03 0)20209E#00 0)94849E!04 0)42389E!01 0)90385E!04 0)11616E!01 0)93966E!04 0)34655E!02 0)11002E!03 0)10441E!02 0)14724E!03

5)3535 3)75 0)15217E!03 0)22045E#00 0)13806E!03 0)47805E!01 0)13168E!03 0)13673E!01 0)13535E!03 0)42730E!02 0)15472E!03 0)13461E!02 0)20055E!03

5)6924 4)00 0)20956E!03 0)23873E#00 0)19127E!03 0)53266E!01 0)18278E!03 0)15810E!01 0)18638E!03 0)51457E!02 0)20905E!03 0)16857E!02 0)26384E!03

6)0320 4)25 0)27722E!03 0)25695E#00 0)25442E!03 0)58756E!01 0)24371E!03 0)18011E!01 0)24716E!03 0)60754E!02 0)27311E!03 0)20601E!02 0)33706E!03

6)3722 4)50 0)35466E!03 0)27511E#00 0)32713E!03 0)64260E!01 0)31423E!03 0)20262E!01 0)31750E!03 0)70542E!02 0)34673E!03 0)24661E!02 0)41998E!03

6)7129 4)75 0)44117E!03 0)29320E#00 0)40880E!03 0)69768E!01 0)39383E!03 0)22553E!01 0)39703E!03 0)80746E!02 0)42957E!03 0)29006E!02 0)51216E!03

7)0541 5)00 0)53591E!03 0)31122E#00 0)49870E!03 0)75274E!01 0)48189E!03 0)24874E!01 0)48517E!03 0)91302E!02 0)52113E!03 0)33603E!02 0)61307E!03
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TABLE 3

Continued

(c) Third mode

�*
��
/�*

�
C

�
C

�
C

	
C

�
C


C

��
C

��
C

�	
C

��
C

�
C

��
C

��

1)0028 0)05 !0)7195E!09 0)29597E!10 !0)3816E!11 0)52638E!05 !0)2751E!13 0)29468E!13 0)10667E!08 0)52572E!13 !0)4725E!13 0)25843E!12 0)10580E!13

1)0676 0)25 0)21194E!11!0)1659E!12 0)50341E!13 0)63048E!03 0)11276E!12 0)71204E!14 0)31209E!05 0)19749E!11 0)40138E!15 0)18104E!07 0)61379E!10

1)2451 0)50 0)17757E!09 0)43756E!09 0)62864E!12 0)44680E!02 0)55977E!09 0)24613E!13 0)82748E!04 0)26226E!08 0)71936E!15 0)17868E!05 0)22416E!07

1)4883 0)75 0)39410E!07 0)55804E!07 0)66890E!10 0)12710E!01 0)50266E!07 0)84692E!11 0)48023E!03 0)12291E!06 0)59937E!12 0)21056E!04 0)53260E!06

1)7669 1)00 0)10610E!05 0)10846E!05 !0)3454E!08 0)24782E!01 0)85584E!06 !0)1052E!09 0)14801E!02 0)14314E!05 !0)2849E!12 0)10238E!03 0)40632E!05

2)0652 1)25 0)96037E!05 0)79001E!05 !0)9340E!07 0)39543E!01 0)59219E!05 !0)9678E!08 0)32446E!02 0)78751E!05 !0)1053E!08 0)30889E!03 0)16832E!04

2)3756 1)50 0)45941E!04 0)32308E!04 !0)7580E!06 0)55987E!01 0)23737E!04 !0)1145E!06 0)57847E!02 0)27442E!04 !0)1726E!07 0)69708E!03 0)48152E!04

2)6938 1)75 0)14673E!03 0)91613E!04 !0)3373E!05 0)73416E!01 0)66796E!04 !0)6486E!06 0)90140E!02 0)70832E!04 !0)1219E!06 0)13005E!02 0)10809E!03

3)0174 2)00 0)35750E!03 0)20326E!03 !0)1035E!04 0)91387E!01 0)14780E!03 !0)2372E!05 0)12806E!01 0)14851E!03 !0)5270E!06 0)21275E!02 0)20509E!03

3)3450 2)25 0)72077E!03 0)37998E!03 !0)2475E!04 0)10963E#00 0)27608E!03 !0)6479E!05 0)17033E!01 0)26812E!03 !0)1642E!05 0)31667E!02 0)34463E!03

3)6757 2)50 0)12672E!02 0)62776E!03 !0)4960E!04 0)12798E#00 0)45606E!03 !0)1441E!04 0)21581E!01 0)43339E!03 !0)4057E!05 0)43949E!02 0)52880E!03

4)0086 2)75 0)20123E!02 0)94634E!03 !0)8730E!04 0)14634E#00 0)68755E!03 !0)2756E!04 0)26359E!01 0)64430E!03 !0)8450E!05 0)57836E!02 0)75677E!03

4)3435 3)00 0)29574E!02 0)13309E!02 !0)1394E!03 0)16466E#00 0)96704E!03 !0)4705E!04 0)31294E!01 0)89802E!03 !0)1547E!04 0)73039E!02 0)10256E!02

4)6798 3)25 0)40932E!02 0)17742E!02 !0)2064E!03 0)18291E#00 0)12891E!02 !0)7358E!04 0)36333E!01 0)11900E!02 !0)2563E!04 0)89289E!02 0)13309E!02

5)0174 3)50 0)54035E!02 0)22677E!02 !0)2880E!03 0)20107E#00 0)16475E!02 !0)1074E!03 0)41436E!01 0)15151E!02 !0)3926E!04 0)10635E!01 0)16678E!02

5)3561 3)75 0)68684E!02 0)28031E!02 !0)3835E!03 0)21913E#00 0)20361E!02 !0)1485E!03 0)46574E!01 0)18678E!02 !0)5650E!04 0)12402E!01 0)20315E!02

5)6957 4)00 0)84667E!02 0)33724E!02 !0)4915E!03 0)23710E#00 0)24491E!02 !0)1965E!03 0)51727E!01 0)22432E!02 !0)7733E!04 0)14215E!01 0)24172E!02

6)0360 4)25 0)10178E!01 0)39688E!02 !0)6107E!03 0)25497E#00 0)28815E!02 !0)2507E!03 0)56881E!01 0)26367E!02 !0)1016E!03 0)16060E!01 0)28208E!02

6)3770 4)50 0)11983E!01 0)45864E!02 !0)7396E!03 0)27276E#00 0)33290E!02 !0)3106E!03 0)62025E!01 0)30446E!02 !0)1290E!03 0)17928E!01 0)32386E!02

6)7186 4)75 0)13865E!01 0)52203E!02 !0)8768E!03 0)29046E#00 0)37880E!02 !0)3755E!05 0)67154E!01 0)34634E!02 !0)1594E!03 0)19809E!01 0)36675E!02

7)0607 5)00 0)15810E!01 0)58664E!02 !0)1021E!02 0)30809E#00 0)42556E!02 !0)4447E!03 0)72262E!01 0)38906E!02 !0)1923E!03 0)21699E!01 0)41049E!02
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TABLE 3

Continued

(d) Fourth mode

�*
��
/�*

�
C

�
C

�
C



C

�
C

��
C

��
C

��
C

�

C

��
C

��
C

��
C

��

1)0028 0)05 !0)39751E!10 !0)2898E!11 0)58726E!12 !0)1327E!13 0)52638E!05 0)25104E!13 0)13458E!13 !0)96515E!14 0)10666E!08 0)17641E!12 0)98798E!14

1)0676 0)25 0)49818E!10 0)27462E!09 0)31778E!13 0)23795E!12 0)63048E!03 0)75661E!09 !0)2032E!14 0)21744E!14 0)31207E!05 0)12388E!07 !0)5182E!14

1)2451 0)50 0)15529E!06 0)23355E!06 0)11944E!12 0)23293E!08 0)44680E!02 0)26110E!06 0)20713E!12 0)74323E!10 0)82686E!04 0)12079E!05 0)93645E!12

1)4883 0)75 0)86570E!05 0)64803E!05 0)13894E!09 0)21997E!06 0)12709E!01 0)57106E!05 0)15324E!09 0)14302E!07 0)47876E!03 0)14032E!04 0)36602E!09

1)7669 1)00 0)96536E!04 0)45477E!04 0)90275E!08 0)32254E!05 0)24773E!01 0)38886E!04 0)80701E!08 0)32875E!06 0)14690E!02 0)67256E!04 0)13325E!07

2)0653 1)25 0)47327E!03 0)15785E!03 0)13413E!06 0)18440E!04 0)39500E!01 0)14029E!03 0)10827E!06 0)25449E!05 0)31990E!02 0)19966E!03 0)14277E!06

2)3758 1)50 0)14426E!02 0)36510E!03 0)85542E!06 0)61597E!04 0)55859E!01 0)34486E!03 0)65559E!06 0)10511E!04 0)56568E!02 0)44173E!03 0)75035E!06

2)6943 1)75 0)32655E!02 0)65671E!03 0)32355E!05 0)14766E!03 0)73126E!01 0)66328E!03 0)24136E!05 0)29356E!04 0)87338E!02 0)80459E!03 0)25200E!05

3)0185 2)00 0)60704E!02 0)10031E!02 0)87061E!05 0)28500E!03 0)90847E!01 0)10835E!02 0)64044E!05 0)63414E!04 0)12289E!01 0)12809E!02 0)62889E!05

3)3468 2)25 0)98498E!02 0)13724E!02 0)18586E!04 0)47444E!03 0)10875E#00 0)15823E!02 0)13579E!04 0)11491E!03 0)16189E!01 0)18524E!02 0)12787E!04

3)6784 2)50 0)14504E!01 0)17402E!02 0)33718E!04 0)71144E!03 0)12668E#00 0)21351E!02 0)24568E!04 0)18391E!03 0)20322E!01 0)24969E!02 0)22467E!04

4)0124 2)75 0)19891E!01 0)20914E!02 0)54374E!04 0)98877E!03 0)14455E#00 0)27213E!02 0)39601E!04 0)26893E!03 0)24605E!01 0)31939E!02 0)35471E!04

4)3485 3)00 0)25860E!01 0)24186E!02 0)80352E!04 0)12985E!02 0)16232E#00 0)33257E!02 0)58576E!04 0)36772E!03 0)28977E!01 0)39264E!02 0)51690E!04

4)6862 3)25 0)32274E!01 0)27197E!02 0)11115E!03 0)16334E!02 0)17996E#00 0)39379E!02 0)81158E!04 0)47780E!03 0)33396E!01 0)46812E!02 0)70849E!04

5)0253 3)50 0)39016E!01 0)29956E!02 0)14611E!03 0)19870E!02 0)19749E#00 0)45510E!02 0)10690E!03 0)59682E!03 0)37833E!01 0)54488E!02 0)92585E!04

5)3655 3)75 0)45993E!01 0)32488E!02 0)18454E!03 0)23541E!02 0)21490E#00 0)51611E!02 0)13531E!03 0)72271E!03 0)42269E!01 0)62226E!02 0)11651E!03

5)7066 4)00 0)53130E!01 0)34825E!02 0)22580E!03 0)27307E!02 0)23219E#00 0)57659E!02 0)16591E!03 0)85373E!03 0)46693E!01 0)69980E!02 0)14225E!03

6)0485 4)25 0)60408E!01 0)37126E!02 0)24522E!03 0)32030E!02 0)24932E#00 0)62834E!02 0)20277E!03 0)84422E!03 0)51064E!01 0)78120E!02 0)72606E!04

6)3912 4)50 0)67677E!01 0)39032E!02 0)31453E!03 0)35006E!02 0)26647E#00 0)69557E!02 0)23205E!03 0)11259E!02 0)55479E!01 0)85429E!02 0)19782E!03

6)7344 4)75 0)75013E!01 0)40955E!02 0)36108E!03 0)38897E!02 0)28348E#00 0)75404E!02 0)26690E!03 0)12650E!02 0)59834E!01 0)93093E!02 0)22711E!03

7)081 5)00 0)82358E!01 0)42788E!02 0)40861E!03 0)42797E!02 0)30041E#00 0)81185E!02 0)30255E!03 0)14053E!02 0)64162E!01 0)10071E!01 0)25710E!03
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Figure 3. Basic function contribution coe$cients to (a) "rst non-linear mode shape; (b) second non-linear mode
shape and (c) third non-linear mode shape and (d) fourth non-linear mode shape, for �"0)05.
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corresponding to c
�

varying from 0)05 to 5 for the fourth mode and their associated
non-linear frequency ratios (�*

�

/�*



)
�

are presented in Table 3(d). It can be seen from
Table 3(a}d) that the rate of increase in non-linear fundamental frequency with increasing
displacement is very low at small amplitudes, for a given shell thickness. This can lead to the
conclusion that the practical use of the linear frequencies for such amplitudes can be of
acceptable accuracy, although it must limit the expected frequency estimate accuracy to
a reasonable range.

In Figure 3(a}d), the basic function coe$cients, corresponding to an in"nite shell having
0)05 as thickness to radius ratio, are plotted versus the non-linear frequency ratio (�*

�

/�*



)
�

(�*


is the corresponding linear frequency parameter given in references [41, 42]), for the

"rst, second, third and fourth mode shapes. It can be observed that near the linear frequency
of a given mode only the corresponding basic function has a signi"cant contribution. At
large displacements amplitudes, the higher mode contribution coe$cients and resonance
frequencies increase (see Table 2 in which �*

�

alone are presented for the "rst four modes),

but the non-linear frequency ratio (�*
�

/�*



)
�
dependence on c

�
is almost identical for all

values of i considered here (see also Table 3(a}d)).
The normalized "rst four mode shapes are plotted in Figure 4(a}d) for the values of the

vibration normalized amplitude=*/=*
��

and �*
�


given in Table 4(a}d). It can be seen
that all are amplitude dependent and the non-linearity e!ect is qualitatively the same for the
"rst four non-linear mode shapes. This last characteristic appears clearly in Figure 4, by
looking at the collapse between the linear curve (i.e., curve (1)) and the most external
non-linear curve (i.e., (5)). This fact is con"rmed quantitatively by no change in the
frequency parameter ratio (�*

�

/�*



)
�
with increasing mode order (see Table 3).



Figure 4. Theoretical non-linear "rst mode shapes of a circular cylindrical shell of in"nite length with �"0)5 for
(a) curves numbered 1}5 see Table 4(a); (b) curves numbered 1}5 see Table 4(b); (c) curves numbered 1}5 see Table
4(c); (d) curves numbered 1}5 see Table 4(d).
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3.5. EFFECT OF GEOMETRICAL NON-LINEARITY ON THE NATURAL FREQUENCIES

OF INFINITE SHELLS HAVING VARIOUS THICKNESS TO RADIUS RATIO �

To illustrate the e!ect of geometrical non-linearity, numerical results have been presented
for the "rst non-linear mode. Low values of �"h/R represent the behaviour of very thin
in"nite shells, while large values of � re#ect the behaviour of moderate thin shells.
Representative curves, depicting these behaviours, are given in Figure 5. It can be seen that
no detectable non-linearity is observed for values of the ratio � less than 0)001 and for
a given value of c

�
. However, the non-linear frequency parameter depends strongly on the

parameter (h/R). It may be surprising to "nd that one compares the non-linear behaviour of
shells of the same radius R, the non-linear frequency increases with �, which means that it
increases with the thickness h. On one hand, this fact is mathematically due to the presence
of a coe$cient ��, which is very small for small values of �, in the expression of the
non-linear term b*

��	

(see equation (15)). On the other hand, it should not be forgotten that as

c
�
"w

�
/h, when a comparison is made for the same value of c

�
, for example c

�
"2)5

corresponding to the horizontal line of Figure 5, the actual physical amplitude of vibration
w
�
"c

�
h"2)5h, is also increasing with h for shells assumed to have the same radius R. So,

the comparison is made between shells having the same radius R, but increasing values of
the physical amplitude of vibration displacement and hence increasing stretching e!ect,
which explains the increase in the non-linear e!ect, with increasing �.

3.6. FORMS OF THE CIRCUMFERENTIAL NODAL PATTERNS ASSOCIATED WITH THE FIRST FIVE

NON-LINEAR MODE SHAPES OF INFINITE SHELLS COMPARISON WITH LINEAR RESULTS

To determine the non-linear modes and show the e!ect of non-linearity on the natural
mode shapes of an in"nite cylinder, the undeformed circumference of the cylinder and the



TABLE 4

Maximum normalized amplitude and frequency parameters corresponding to the ,rst four
non-linear mode shapes and curvatures plotted in Figure 4(a}d)

Curves =*
��

�*
��

(a) First mode
1 0)05000526 0)01447428
2 1)29313848 0)02980875
3 2)65601182 0)05304729
4 4)03868611 0)07726872
5 5)42829728 0)10180685

(b) Second mode
1 0)05000527 0)05789714
2 1)29313827 0)11923500
3 2)65598944 0)21218956
4 4)03845498 0)30908327
5 5)42699929 0)40726778

(c) Third mode
1 0)05000526 0)13026856
2 1)29314441 0)26827911
3 2)65719985 0)47748176
4 4)04310406 0)69577887
5 5)43424725 0)91720896

(d) Fourth mode
1 0)05000526 0)23158855
2 1)29369141 0)47695899
3 2)66885208 0)84948480
4 4)07130428 1)23909784
5 5)47605175 1)63462264

Figure 5. The e!ect of frequency upon large vibration amplitude for various thickness to radius ratios of
a circular cylindrical shell of in"nite length at "rst mode.
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form of the linear and non-linear mode shapes are plotted in Figures 6}10. These "gures
correspond to the "rst "ve modes when the non-dimensional transverse vibration
parameter C

�
/h varies from 0)05 to 10, and for values of the thickness to radius ratios equal



Figure 6. Comparison of non-linear (dashed lines) and linear (thin solid lines) circumferential nodal patterns of
the "rst mode shapes for thickness to radius ratios (a) �"0)05 and (b) �"0)09. Non-dimensional vibration
amplitudes C

�
/h and non-linear frequency parameters �*

��
are equal to: (a) curve 1, (0)05; 0)01447); curve 2,

(5; 0)10181); curve 3, (10; 0)20091); (b) curve 1, (0)05; 0)02605); curve (2), (5; 0)18325); curve 3, (10; 0)36163).
Undeformed cylinder. *�*.

Figure 7. Comparison of non-linear (dashed lines) and linear (thin solid lines) circumferential nodal patterns of
the second mode shapes for thickness to radius ratios (a) �"0)05 and (b) 0)09. Non-dimensional vibration
amplitudes C

�
/h and non-linear frequency parameters �*

��
are equal to: (a) curve 1, (0)05; 0)057897); curve 2, (5;

0)40541); curve 3, (10; 0)80410); (b) curve 1, (0)05; 0)1042); curve 2, (5; 0)7331); curve 3, (10; 1)4474). Undeformed
cylinder, *�*.

NON-LINEAR SHELL VIBRATION 951
to 0)05 (see Figures 6(a)}10(a)) and 0)09 (see Figures 6(b)}10(b)). In each "gure, the
non-linear frequency parameter and the corresponding vibration displacement amplitudes
are given. The shape of the undeformed cylinder is plotted in small squares, the linear modes
are plotted with thin solid lines and the non-linear modes are plotted with dashed lines. It is
observed that all modes are deformed either positively (dilation) or negatively (compression)
under the non-linearity e!ect. These deformations increase with increasing vibration
amplitude and thickness to radius ratio. Of course, the vibration frequency also increases
when the deformation increases. It can also be seen that the deformations due to
non-linearity are important particularly at point y*"0 and � for the "rst four modes. For
the "fth non-linear mode these deformations are equal and homogeneously distributed. In
these "gures, it can be seen that the symmetrical form of the even linear mode shapes is
conserved for the non-linear modes shapes. The same characteristic is clear for the
asymmetrical form of the odd mode shapes. Therefore, to complete the study of
the dynamical behaviour and evaluate quantitatively these deformations, an analysis of the



Figure 8. Comparison of non-linear (dashed lines) and linear (thin solid lines) circumferential nodal patterns of
the third mode shapes for thickness to radius ratios (a) �"0)05 and (b) �"0)09. Non-dimensional vibration
amplitudes C

�
/h and non-linear frequency parameters �*

��
are equal to: (a) curve 1, (0)05; 0)1303); curve 2,

(5; 0)9172); curve 3, (10; 1)8128); (b) curve 1; (0)05; 0)2345); curve 2, (5; 1)6510), curve 3; (10; 3)2630). undeformed
cylinder, *�*.

Figure 9. Comparison of non-linear (dashed lines) and linear (thin solid lines) circumferential nodal patterns of
the fourth mode shapes for thickness to radius (a) �"0)05 and (b) 0)09. Non-dimensional vibration amplitudes
C

�
/h and non-linear frequency parameters �*

��
are equal to: (a) curve 1, (0)05; 0)2316), curve 2, (5; 1)6346); curve 3,

(10; 3)2342); (b) curve 1, (0)05; 0)4166); curve 2, (5; 2)9423); curve 3, (10; 5)8215). undeformed cylinder, *�*.
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corresponding bending stress distribution is necessary to show how much the non-linear
e!ect in#uences the dynamic behaviour of the structure.

3.7. NON-LINEAR EFFECT ON THE BENDING STRESS DISTRIBUTION. COMPARISON WITH

LINEAR RESULTS

The bending stress distributions along the external circumferential co-ordinate
corresponding to the "rst four non-linear mode shapes are plotted in Figures 11}14 for
various vibration displacement amplitudes c

�
varying from 0)05 up to 3 times the thickness



Figure 10. Comparison of non-linear (dashed lines) and linear (thin solid lines) circumferential nodal patterns of
the "fth mode shapes for thickness to radius (a) �"0)05 and (b) �"0)09. Non-dimensional vibration amplitudes
C

	
/h and non-linear frequency parameters �*

��
are equal to: (a) curve 1, (0)05; 0)2316); curve 2, (5; 1)6346); curve 3,

(10; 3)2342); (b) curve 1, (0)05; 0)4166); curve 2, (5; 2)9423); curve 3, (10; 5)8215).

Figure 11. Non-dimensional bending stress distribution along the shell circumference for the "rst non-linear
mode for vibration amplitudes C

�
/h, �"0)05 and non-linear frequency parameters �*

��
equal to: curve 1, (0)05;

0)014474); curve 2, (0)75; 0)021482); curve 3, (1)5; 0)034288); curve 4, (2)25; 0)048278) and curve 5, (3; 0)062677).
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(with i""rst mode to fourth mode). It can be seen that the stresses increase with increasing
vibration amplitude and the mode order. It is also observed that all these stress
distributions admit a maximum and a minimum and regions of stress concentration around
them. So, for the "rst mode the maximal stress is found at circumference point y*/2�"0)5,
for the second mode it is at y*/2�"0)25 and 0)75, for the third mode it is at y*/2�"0)167,
0)5 and 0)833 and for the fourth mode it is at y*/2�"0)125, 0)5, 0)625 and 0)75.
The repartition of these maximums conforms to the mode shape presented above (see
Figures 6}9).

A comparison of the bending stress obtained in the linear case (by putting b*
��	


"0 in the
present model) with that obtained when the non-linear e!ect is introduced is presented in
Figures 15}18 for the "rst four mode shapes. It can be seen that all curves show the



Figure 12. Non-dimensional bending stress distribution along the shell circumference for the second non-linear
mode for vibration amplitudes C

�
/h, �"0)05 and non-linear frequency parameters �*

��
equal to: curve 1, (0)05;

0)057897); curve 2, (0)75; 0)085927); curve 3, (1)5; 1)371521); curve 4, (2)25; 1)931119) and curve 5, (3; 2)507089).

Figure 13. Non-dimensional bending stress distribution along the shell circumference for the third non-linear
mode for vibration amplitudes C

�
/h, �"0)05 and non-linear frequency parameters �*

��
equal to: curve 1, (0)05;

0)130269); curve 2, (0)75; 0)193338); curve 3, (1)5; 0)308594); curve 4, (2)25; 0)434532) and curve 5, (3; 0)564232).

Figure 14. Non-dimensional bending stress distribution along the shell circumference for the fourth non-linear
mode for vibration amplitudes C

�
/h, �"0)05 and non-linear frequency parameters �*

��
equal to: curve 1, (0)05;

0)231589); curve 2, (0)75; 0)343711); curve 3, (1)5; 0)548669); curve 4, (2)25; 0)772919) and curve 5, (3; 1)004242).

954 F. MOUSSAOUI E¹ A¸.



Figure 15. E!ect of large vibration amplitudes on the non-dimensional bending stress corresponding to the "rst
mode at shell circumference points y*/2�"0)5, with �"0)05.

Figure 16. E!ect of large vibration amplitudes on the non-dimensional bending stress corresponding to the
second mode at shell circumference point y*/2�"0)25, with �"0)05.
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amplitude dependence of the stress distribution, and exhibit clearly a high increase of the
bending stress, compared with the rate of increase expected in the linear theory.

3.8. NATURAL FREQUENCIES OF THE HIGHER MODES ASSOCIATED WITH THE

LONGITUDINAL FUNDAMENTAL MODE OF FINITE CIRCULAR CYLINDRICAL SHELLS.

APPROXIMATE SOLUTION

Using the analytical approach formulated above for the in"nite length shell, numerical
solutions of the set of non-linear algebraic equations (26) are obtained at small vibration
amplitudes. These results are compared with those obtained by analytical methods of
several authors for "nite cylindrical shells vibrating at small vibration amplitudes (linear
case) [27}29]. Table 5 reproduces these results together with the corresponding theoretical
values computed in the present analysis. The authors of these works have used a laborious



Figure 17. E!ect of large vibration amplitudes on the non-dimensional bending stress corresponding to the
third mode at shell circumference point y*/2�"0)5, with �"0)05.

Figure 18. E!ect of large vibration amplitude on the non-dimensional bending stress corresponding to the
fourth mode at shell circumference point y*/2�"0)125, with �"0)05.
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formulation including the longitudinal, circumferential (tangential) and transverse
displacement ;, < and = respectively. This fact complicated the formulation and
consequently the solution of equations. The same results have been obtained via the present
model for small vibration amplitudes quite easily.

To provide additional comparison of numerical solutions of equations (26), a set of
experimental studies, reported in references [27}29], was considered. Table 6 regroups these
results for relatively long, very thin and moderate thin shells. The geometrical and physical
characteristics are given in each case. It can be seen, from Tables 5 and 6 that, in general, the
natural frequencies obtained from the present analysis agree quite well with results from
other analytical methods and experiment data, in particular, for higher values of
circumferential mode number n and small axial mode number m. The accuracy of the
present approximation increases with the length to radius ratio. It can be noticed that



TABLE 5

Comparison of frequencies (Hz) obtained for small vibration amplitude from solution of the set
of non-linear algebraic equations (26), using the multi-mode approach, of a circular cylindrical
shell of in,nite length, with linear theoretical results of ,nite circular cylindrical shells obtained

by di+erent analytical methods (�"h/R; �"¸/R)

Circumferencial mode no. (n)

Characteristics of shell References 2 3 4 5 6

�"0)0114, �"4)11 Yang [28] } } 184 253 355
�"8020 kg/m�, �"0)30 Present work } } 156 244 352
E"1)951�10��N/m�

�"0)0075, �"5)2 Coupry [27] } } 165 231 342
�"7800 kg/m�, �"0)3 Present work } } 146 229 329
E"2�10��N/m�

�"0)00675, �"7)35 Coupry [27] } } 68 104 }

�"7800 kg/m�, �"0)3 Present work } } 66 103 }

E"2�10��N/m�

�"0)0525, �"8)0868 Yang [28] 1485 2364 4147 6504 9396
�"7840 kg/m�, �"0)29 Exact method of Smith

and Haft [28] 1429 2336 4142 6500 9400
E"2)041�10��N/m� Approximate method of

Smith and Haft [28] 1575 2784 4192 6565 9453
Method of Arnold and
Warburton [28] 1147 2092 3892 6249 9134
Present work 1053 2370 4213 6582 9478
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among 15 natural frequencies measured, 11 are better predicted by the present
approximation with no discrepancy larger than 10%.

Consequently, it can be concluded, in the light of these comparisons, that the model
presented here, can be used for describing the dynamic behaviour of "nite cylinders having
a length ¸ larger than about six times the radius. This approach is valuable for the
fundamental longitudinal mode (m"1) and high circumferential number mode (n'3) and
has the advantage of simplicity compared with previous works.

4. CONCLUSIONS

Analytical and numerical results have been presented in this paper for the non-linear free
vibration of cylindrical shells. The objectives were (1) to develop a semi-analytical model,
based on Hamilton's principle and spectral analysis, permitting easy calculation of the
non-linear transverse mode shapes and their corresponding frequencies for cylindrical shells
of in"nite length: (2) to validate the model via comparison with previously published results,
and (3) to give supplementary new results, especially the frequencies, bending stress
distributions and the associated non-linear mode shapes taking into account the
contribution of the higher modes. It has been shown that the forms of the mode shapes, at
large vibration amplitudes, exhibit clearly a deformation for moderate thin shells if
non-linear e!ects due to large vibration amplitudes are taken into account. It is interesting
to note that the non-linearity can a!ect signi"cantly the bending stresses in such types of



TABLE 6

Comparison of frequencies (Hz) obtained, for small vibration amplitude, from solution of the set of non-linear algebraic equations (26), using the
multi-mode approach, of a circular cylindrical shell of in,nite length, with experimental results for a ,nite circular cylindrical shell obtained by

several authors in the linear case (�"h/R; �"¸/R)

Characteristics �"0)0114, �"4)11 �"0)0075, �"5)2 �"0.00675, �"7.35 �"0)0525, �"8)10
of shell �"8020 kg/m�, �"0)30 �"7800 kg/m�, �"0)3 �"7800 kg/m�, �"0)3 �"7840 kg/m�, �"0)29

E"1)95�10��N/m� E"2�10��N/m� E"2�10��N/m� E"2.04�10��N/m�

Mode no. (n) [28] 	* (%) P.W [27] 	 (%) P.W [27] 	 (%) P.W [29] 	 (%) P.W

3 214 } 88 } } } 60 } 37 2150 9.28 2370
4 199 27.56 156 174 19.18 146 68 3.03 66 3970 5.77 4213
5 256 4.92 244 240 4.80 229 106 2.90 103 6320 3.98 6582
6 324 7.95 352 329 0.00 329 } } 148 9230 2.62 9478
7 } } } 447 0.22 448 } } } } } }

P.W: present work and 	*"([..]!P.W)/P.W.
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structures and will certainly modify the predicted fatigue life. It can be concluded also, in the
light of the discussion concerning the "nite simply supported cylindrical shell results
presented in section 3.8, that the semi-analytical model presented here, can be considered as
a good approximation in many engineering applications in which shells vibrate non-linearly
at small amplitudes with higher values of circumferential mode number n (n'3) associated
to the fundamental longitudinal mode shape (m"1). It is noticable that this approach is
easily exploited and simpli"es considerably the mathematical analysis describing the
dynamic behaviour of "nite cylindrical shells. On the other hand, the analysis presented in
this paper is independent of the axial wavelength and can be used without imposing any
restriction on the shell boundary conditions. It represents the asymptotic results for a given
n and �"h/R when ¸/RPR but does not represent a general solution of the dynamic
behaviour of "nite shells. Study of this subject will be completed by development of
a non-linear vibration general model of "nite cylindrical shells, in a later work (Part III) of
this series of papers.
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APPENDIX A

The purpose of this appendix is to justify the approximation made in the present paper,
according to which it may be assumed, when the motion is predominately transverse, that:

c
�
"!nb

�

in which n is the order of the shell free mode of vibration considered, b
�
and c

�
are the

coe$cients of the circumferential and transverse displacements functions (sin(ny/R)) and
(cos (ny/R)) respectively. This assumption will be justi"ed both in the linear and non-linear
cases on the light of previously published results.

A.1. THE LINEAR CASE

According to the results which are considered as classical, corresponding to the coupled
transverse}circumferential vibration of thin elastic shells of in"nite length, published in the
monograph of Leissa [59, 60], the coe$cients b and c de"ned above are related from the



TABLE A1

Percentage error in linear case for the ,rst four modes

Mode ordern Lowest frequency b

c
"

n

�*�



!n�

b

c
"!

1

n
Error(n) from Reference [59]
(%)

1
2
3
4

1)02062�10��
5)16417�10��
1)23256�10��
2)21118�10��

!1)0001042
!0)5003336
!0)3338970
!0)2507663

!1)000
!0)500
!0)333
!0)250

0)0104
0)0334
0)0564
0)0766
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single-mode approach to

b/c"n/(�*�



!n�) . (A.1)

in which �*�



is the lowest frequency parameter associated with the mode considered, and
correspondg to a motion which is predominately transverse. It should be noticed that
a typographic mistake occurred in the monograph (p. 42), in which one can read n� and
��!n� instead of n and n�!�� in equation (2.32) of reference [59].

In Table A1 are given the values of the ratio b/nc obtained from equation (A.1), in which
n varies from 1 to 4 (which corresponds to the modes considered in the present paper) and
�*



is replaced by the values given in Table 2.2 of reference [59] for the associated lowest

frequencies of an in"nite long shell having �"h/R"0)05. It can be seen in Table A1 that
the error induced by taking b/nc"1, which is the approximationmade in the present work,
does not exceed 0)1%.

A.2. NON-LINEAR CASE

In Part I [56] of this series of paper, the "rst and second coupled transverse}
circumferential non-linear mode shapes have been determined for a wide range of vibration
TABLE A2

Percentage error in non-linear case

(a) First mode
�*�



/�*�

�

[56] C

�
[56] B

�
[56] C

�
/B

�
Error (%)

1)00087
1)10207
1)27698
1)68759
1)95233

0)0500
0)5500
0)9500
1)6500
2)0500

!0)0500
!0)5501
!0)9502
!1)6510
!2)0510

!1)00000
!0)99982
!0)99979
!0)99939
!0)99951

0)0000
0)0180
0)0210
0)0610
0)0488

(b) second mode
�*�



/�*�

�

[56] C

�
[56] B

�
[56] C

�
/2B

�
Error (%)

1)00217
1)25867
1)66939
2)38985
2)74853

0)05
0)55
0)95
1)65
2)05

!0)02502
!0)27529
!0)47588
!0)82815
!1)03020

!0)99932
!0)99895
!0)99815
!0)99620
!0)99495

0)0680
0)1053
0)1849
0)3804
0)5048
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amplitudes. Although a multi-mode approach was adopted in this work for both the
transverse displacement= and the circumferential displacement <, which were expanded
as series of six functions, the predominant terms for all amplitudes considered were B

�
and

C
�
for the "rst mode, and B

�
andC

�
for the second mode. Also, it was found, as may be seen

in Table A2(a, b), that C
�
/B

�
may be approximated by unity with a percentage error not

exceeding 0)1%, and that C
�
/2B

�
may be approximated by unity with a percentage error

not exceeding 0)5%.

APPENDIX B: NOMENCLATURE

<
�
, <

�
, < bending, axial and total strain energy respectively

¹ kinetic energy
y circumferential position co-ordinate
h shell thickness
R radius of shell median surface
E Young's modulus
D bending sti!ness
� mass density per unit volume
� thickness to radius ratio
k
��
, m

��
, b

��	

general term of the rigidity tensor, the mass tensor and the non-linear
tensor respectively

k*
��
, m*

��
and b*

��	

general term of the non-dimensional rigidity tensor, mass tensor
and non-linearity tensor respectively

=(y, t) transverse displacement at point y of the shell= (y, t )"w(y) cos�t
�

�

, �*

�

frequency and non-dimensional frequency parameter respectively

�C� column matrix �C��"[c
�
,2,c

�
]

[K], [M], [B] rigidity, mass and non-linearity matrices, respectively

, 
* stress and non-dimensional stresses respectively
* the star exponent indicates non-dimensional parameters
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